Print preview Close

Showing 158 results

Archivistische beschrijving
30 results with digital objects Show results with digital objects
EDDN/B/2/21 · Stuk · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 4∙1. Double frames.
§ 4∙2. Interchange.
§ 4∙3. The dual frame.
§ 4∙4. Double phase space.
§ 4∙5[a]. The relation between mass and density.
§ 4∙6. [Untitled.]
§ 4∙5[b]. [Untitled.]

[Chapter I]
EDDN/B/2/20 · Stuk · [early 1940s]
Part of Papers of Sir Arthur Eddington

§ 1∙9 [continued].
Part of an unidentified chapter.
§ 1∙9. Individual and statistical particles.
§ 1∙8. Electric charge.
Rough calculations.

Chapter IX: Wave Functions
EDDN/B/2/2 · Stuk · Apr. 1944
Part of Papers of Sir Arthur Eddington

§ 87. Angular momentum.
§ 88. The gradient operator.
§ 89. Wave equation of the hydrogen intracule.
§ 90. Solution of the wave equation.
§ 91. The Coulomb energy.
§ 92. Fixed-scale units.

Chapter V: Electric Charge
EDDN/B/2/19 · Stuk · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 5∙1. Electric charge.
§ 5∙2. The electrical stabilisation.
§ 5∙3. The time coordinate.
§ 5∙4. Quadratic and linear energy.
§ 5∙5. The Coulomb energy.
§ 5∙6. Pairing.
§ 5∙7[a]. [Untitled.]
§ 5∙7[b]. The electromagnetic potential.

Chapter VIII
EDDN/B/2/18 · Stuk · [1943]
Part of Papers of Sir Arthur Eddington

§ 73. Angular momentum.
§ 74[a]. The metastable states of hydrogen.
§ 75[a]. The symbolic frame in relative space.
§ 76. Reality conditions in relative space.
§ 75[b]. The symbolic frame in relative space.
§ 74[b]. The differential wave equation.

EDDN/B/2/17 · Stuk · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 1∙1. The conditions of observability.
§ 1∙2[a]. The Gaussian distribution.
§ 1∙3. Systems of description.
§ 1∙4. Relative distribution functions.
§ 1∙5. Application to wave functions.
§ 1∙6[a]. Uranoids.
§ 1∙7. Curvature of space.
§ 1∙8. Proper mass.
§ 1∙9[a]. Object-fields.
§ 1∙9[b]. Four-dimensional theory.
§ 1∙6[b]. Uranoids.
§ 1∙2[b]. The centroid as physical origin.

(The chapter title was altered from ‘The Uncertainty of the Reference Frame’. § 1∙9[b] is marked ‘rewrite under the heading “Stabilising relations”’.)

EDDN/B/2/16 · Stuk · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 2∙1. Particles with spin.
§ 2∙2. Relativity rotations.
§ 2∙3. Neutral space-time.
§ 2∙4. Strain vectors.
§ 2∙5[a]. Reality conditions.
§ 2∙5[b]. Flat space-time.
§ 2∙6. Determinants and eigenvalues.
§ 2∙7. Phase space.
§ 2∙8. Probability distribution of strain vectors.

(§§ 2∙1 and 2∙2 were renumbered from 1∙1 and 1∙2 and, as a result, §§ 2∙3, 2∙4, and 2∙5[a] were renumbered from 2∙2, 2∙3, and 2∙4 respectively; but the necessary alterations to the numbering were carried no further. The title of § 2∙8 was altered from ‘Probability distribution of phase space’.)

Chapter VII: Double Frames
EDDN/B/2/15 · Stuk · May 1943
Part of Papers of Sir Arthur Eddington

§ 61. The EF-frame.
§ 62. Chirality of the double frame.
§ 63. The interchange operator.
§ 64. Duals.
§ 65. The CD-frame.
§ 66. Double phase space.
§ 67. The uranoid and the aether.
§ 68. The tensor identities.
§ 69. The quantum-classical analogy.
§ 70. Recoil rotations.
§ 71. Transformation to a relative frame.

EDDN/B/2/13 · Stuk · Dec. 1942–Aug. 1943
Part of Papers of Sir Arthur Eddington

§ 1. The uncertainty of the origin.
§ 2. The Gaussian distribution.
§ 3. The Bernoulli fluctuation.
§ 4. The standard of length.
§ 5. Range of nuclear forces and the recession of the galaxies.
§ 6. Non-uniform curvature.
§ 7. Uranoids.
§ 8. The extraneous standard.
§ 9. Scale-free physics.
§ 10. Pseudo-discrete distributions.
§ 11. Stabilisation.

(Drafted Dec. 1942; revised Aug. 1943.)

EDDN/B/2/10 · Stuk · Dec. 1942–Aug. 1943
Part of Papers of Sir Arthur Eddington

§ 12. Object-fields.
§ 13. The rigid field convention.
§ 14. Separation of particle and field energy.
§ 15. Application to scale-free systems.
§ 16. Standard carriers.
§ 17. Mass-ratio of the proton and electron.
§ 18. The fine-structure constant.
§ 19. Rigid coordinates.
§ 20. Unsteady states.
§ 21. The inversion of energy.

(Drafted Dec. 1942; revised Aug. 1943.)

EDDN/B/2 · Bestanddeel · early 1940s
Part of Papers of Sir Arthur Eddington

These manuscripts are all in Eddington’s own hand, with the exception of the ringed pencil number on the first page of each and the foliation (in red biro, except B2/20), which were added by Slater, the former in June 1945, the latter about the end of 1947. Other notes by Slater indicate that there is a sheet missing from B2/22 between ff. 4 and 5, and that B2/29 f. 14 is a modification of f. 4.

Chapter VII: Wave Vectors
EDDN/B/1/9 · Stuk · July 1944
Part of Papers of Sir Arthur Eddington

§ 66. Idempotency.
§ 67. Standard form of idempotent vectors.
§ 68. Spectral sets.
§ 69. Catalogue of symbolic coefficients.
§ 70. The wave identities.
§ 71. Matrix representation of E-numbers.
§ 72. Factorisation of E-numbers.
§ 73. Wave tensors of the second rank.
§ 74. Wave tensors of the fourth rank.
§ 75. Phase space.
§ 76. Relative space.
§ 77. Vectors in micro space.
§ 78. The quantum-classical analogy.

EDDN/B/1/8 · Stuk · July 1944
Part of Papers of Sir Arthur Eddington

§ 53. The symbolic frame.
§ 54. Miscellaneous properties of E-symbols.
§ 55. Equivalence and chirality.
§ 56. Rotations.
§ 57. Five-dimensional theory.
§ 58. Ineffective relativity transformations.
§ 59. Strain vectors.
§ 60. Real and imaginary E-symbols.
§ 61. Reality conditions.
§ 62. Distinction between space and time.
§ 63. Neutral space-time.
§ 64. Congruent spaces.
§ 65. Determinants and eigenvalues.

Chapter V: The Planoid
EDDN/B/1/7 · Stuk · July 1944
Part of Papers of Sir Arthur Eddington

§ 46. Uranoid and planoid.
§ 47. Interchange of extracules.
§ 48. The special planoid.
§ 49. The energy of two protons.
§ 50. Non-Coulombian energy.
§ 51. The constant of gravitation.
§ 52. Molar and nuclear constants.

EDDN/B/1/6 · Stuk · July 1944
Part of Papers of Sir Arthur Eddington

§ 34. Unsteady states.
§ 35. Under-observation.
§ 36. Structural and predictive theory.
§ 37. Physical and geometrical distribution functions.
§ 38. The weight function.
§ 39. The genesis of proper mass.
§ 40. Absolute determination of m0.
§ 41. Exclusion.
§ 42. The negative energy levels.
§ 43. Determination of m0 by exclusion theory.
§ 44. Super-dense matter.
§ 45. The degeneracy pressure.

Chapter III: Interchange
EDDN/B/1/5 · Stuk · June 1944
Part of Papers of Sir Arthur Eddington

§ 24. The phase dimension.
§ 25. Interchange of suffixes.
§ 26. The two-particle transformation.
§ 27. Hydrocules.
§ 28. Separation of electrical energy.
§ 29. Current masses of the proton and electron.
§ 30. Molarly controlled charge.
§ 31. Secondary anchors.
§ 32. Calculated values of the microscopic constants.
§ 33. The Coulomb energy.

EDDN/B/1/4 · Stuk · June 1944
Part of Papers of Sir Arthur Eddington

§ 12. Complementary fields.
§ 13. The rigid-field convention.
§ 14. Separation of field and particle energy.
§ 15. Application of scale-free systems.
§ 16. The ‘top particle’.
§ 17. Standard carriers.
§ 18. Mass-ratio of the proton and electron.
§ 19. Rigid coordinates.
§ 20. The fine-structure constant.
§ 21. The inversion of energy.
§ 22. Mutual and self energy.
§ 23. Comparison particles.

EDDN/B/1/3 · Stuk · June 1944
Part of Papers of Sir Arthur Eddington

§ 1. The uncertainty of the origin.
§ 2. The physical origin.
§ 3. The Bernoulli fluctuation.
§ 4. The standard of length.
§ 5. Range of nuclear forces and the recession of the galaxies.
§ 6. Spherical space.
§ 7. Uranoids.
§ 8. The extraneous standard.
§ 9. Scale-free physics.
§ 10. Pseudo-discrete states.
§ 11. Stabilisation.

EDDN/B/1/15 · Stuk · [Sept. 1944 and 1946]
Part of Papers of Sir Arthur Eddington

Chapter XII [continued].
§ 125. Symbolic occupation.
§ 126. Einstein-Bose particles.
§ 127. Photons.
§ 128. Life-time of the mesotron.

Chapter XIII: Epistemological Theory.
[§§ 129–136.] As in Proceedings of the Cambridge Philosophical Society, vol. xl (1944), p. 37, expanded.

Chapter XIV. Summary.
§ 137. The principles of fundamental theory.

EDDN/B/1/13 · Stuk · Sept. 1944
Part of Papers of Sir Arthur Eddington

§ 113. Gauge transformations (molar theory).
§ 114. Action invariants.
§ 115. Gauge transformations (microscopic theory).
§ 116. Indices of wave tensors.
§ 117. Magnetic moments.
§ 118. Magnetic moment of the hydrogen atom.
§ 119. Magnetic moment of the neutron.

(There is no § 120.)

Chapter X: The Wave Equation
EDDN/B/1/12 · Stuk · Sept. 1944
Part of Papers of Sir Arthur Eddington

§ 105. Field momentum.
§ 106. The gradient operator.
§ 107. Isostatic compensation.
§ 108. Wave equation of the hydrogen intracule.
§ 109. Solution of the wave equation.
§ 110. The interchange momentum.
§ 111. The two-frame transformation.
§ 112. Electromagnetic potentials.

EDDN/B/1/11 · Stuk · Aug. 1944
Part of Papers of Sir Arthur Eddington

§ 93. The metastable states of hydrogen.
§ 94. Neutrium and deuterium.
§ 95. Mass of the neutron.
§ 96. Double intracules.
§ 97. Comparison with field theory.
§ 98. Mass of the deuterium atom.
§ 99. Mass of the helium atom.
§ 100. The separation constant of isobaric doublets.
§ 101. Isotopic spin.
§ 102. Radii of nuclei.
§ 103. The nuclear planoid.
§ 104. Mass of the mesotron.

Chapter VIII: Double Frames
EDDN/B/1/10 · Stuk · Aug. 1944
Part of Papers of Sir Arthur Eddington

§ 79. The EF-frame.
§ 80. Chirality of a double frame.
§ 81. The interchange operator.
§ 82. Duals.
§ 83. The CD-frame.
§ 84. Double-wave vectors.
§ 85. The 136-dimensional phase space.
§ 86. Uranoid and aether.
§ 87. The Riemann-Christoffel tensor.
§ 88. The de Sitter universe.
§ 89. The tensor identities.
§ 90. The contracted Riemann-Christoffel tensor.
§ 91. States and interstates.
§ 92. The recalcitrant terms.