Showing 158 results

Archival description
30 results with digital objects Show results with digital objects
EDDN/C/1/6 · Item · [Oct. 1934 x Feb. 1935]
Part of Papers of Sir Arthur Eddington

(This paper includes a description of Eddington’s visit to the Laboratory in Oct. 1934. W. E. Burcham described the circumstances of its composition as follows: ‘towards the end of 1934 Sir Arthur Eddington wrote a pamphlet describing the Cavendish and its achievements to form the basis of ‘an appeal to the friends of science and of Cambridge’. The pamphlet was published in Feb. 1935, and privately circulated to possible benefactors both within and outside Cambridge. See ‘The Cavendish High-voltage Laboratory 1935-39’, Notes and Records of the Royal Society of London, vol. liii, pp. 121-2. (The title appears under the heading ‘Miscellaneous’ in D2/3.))

EDDN/C/1/3 · Item · [14 July x 30 Oct. 1919]
Part of Papers of Sir Arthur Eddington

(This is an early version of part of a report to the Royal Society by the Joint Permanent Eclipse Committee. The latest date mentioned in it is 14 July 1919, and the report was received by the Society on 30 October and read on 6 November.)

[Chapter I]
EDDN/B/2/20 · Item · [early 1940s]
Part of Papers of Sir Arthur Eddington

§ 1∙9 [continued].
Part of an unidentified chapter.
§ 1∙9. Individual and statistical particles.
§ 1∙8. Electric charge.
Rough calculations.

[Chapter I]
EDDN/B/3/2 · Item · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 1∙1. The conditions of observability.
§ 1∙2. Measurables.
§ 1∙3. The fundamental tensor.
§ 1∙4. The comparison fluid.
§ 1∙5. Wave functions.
§ 1∙6. Density and mass.

(Earlier than B2/17. Contains two-number references.)

[Chapter I]
EDDN/B/3/7 · Item · [early 1940s]
Part of Papers of Sir Arthur Eddington

§ 1∙1. Wave functions.
§ 1∙2. The fundamental tensor.

(Marked by Slater ‘later than h [i.e. B3/8]’.)

EDDN/B/2/33 · Item · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 1. The conditions of observability.
§ 2. The Gaussian distribution.
§ 3. Relative distribution functions.
§ 4. Relative wave functions.
§ 5. The weight function.
§ 6. Uranoids.
§ 7. Spherical space.
§ 8. The zero-temperature uranoid.
§ 9. Primitive observables.
§ 10[a]. V3 and V4 particles [incomplete].
§ 10[b]. V3 and V4 particles.

EDDN/B/2/17 · Item · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 1∙1. The conditions of observability.
§ 1∙2[a]. The Gaussian distribution.
§ 1∙3. Systems of description.
§ 1∙4. Relative distribution functions.
§ 1∙5. Application to wave functions.
§ 1∙6[a]. Uranoids.
§ 1∙7. Curvature of space.
§ 1∙8. Proper mass.
§ 1∙9[a]. Object-fields.
§ 1∙9[b]. Four-dimensional theory.
§ 1∙6[b]. Uranoids.
§ 1∙2[b]. The centroid as physical origin.

(The chapter title was altered from ‘The Uncertainty of the Reference Frame’. § 1∙9[b] is marked ‘rewrite under the heading “Stabilising relations”’.)

EDDN/B/1/3 · Item · June 1944
Part of Papers of Sir Arthur Eddington

§ 1. The uncertainty of the origin.
§ 2. The physical origin.
§ 3. The Bernoulli fluctuation.
§ 4. The standard of length.
§ 5. Range of nuclear forces and the recession of the galaxies.
§ 6. Spherical space.
§ 7. Uranoids.
§ 8. The extraneous standard.
§ 9. Scale-free physics.
§ 10. Pseudo-discrete states.
§ 11. Stabilisation.

EDDN/B/2/13 · Item · Dec. 1942–Aug. 1943
Part of Papers of Sir Arthur Eddington

§ 1. The uncertainty of the origin.
§ 2. The Gaussian distribution.
§ 3. The Bernoulli fluctuation.
§ 4. The standard of length.
§ 5. Range of nuclear forces and the recession of the galaxies.
§ 6. Non-uniform curvature.
§ 7. Uranoids.
§ 8. The extraneous standard.
§ 9. Scale-free physics.
§ 10. Pseudo-discrete distributions.
§ 11. Stabilisation.

(Drafted Dec. 1942; revised Aug. 1943.)

EDDN/B/2/10 · Item · Dec. 1942–Aug. 1943
Part of Papers of Sir Arthur Eddington

§ 12. Object-fields.
§ 13. The rigid field convention.
§ 14. Separation of particle and field energy.
§ 15. Application to scale-free systems.
§ 16. Standard carriers.
§ 17. Mass-ratio of the proton and electron.
§ 18. The fine-structure constant.
§ 19. Rigid coordinates.
§ 20. Unsteady states.
§ 21. The inversion of energy.

(Drafted Dec. 1942; revised Aug. 1943.)

EDDN/B/1/4 · Item · June 1944
Part of Papers of Sir Arthur Eddington

§ 12. Complementary fields.
§ 13. The rigid-field convention.
§ 14. Separation of field and particle energy.
§ 15. Application of scale-free systems.
§ 16. The ‘top particle’.
§ 17. Standard carriers.
§ 18. Mass-ratio of the proton and electron.
§ 19. Rigid coordinates.
§ 20. The fine-structure constant.
§ 21. The inversion of energy.
§ 22. Mutual and self energy.
§ 23. Comparison particles.

EDDN/B/2/16 · Item · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 2∙1. Particles with spin.
§ 2∙2. Relativity rotations.
§ 2∙3. Neutral space-time.
§ 2∙4. Strain vectors.
§ 2∙5[a]. Reality conditions.
§ 2∙5[b]. Flat space-time.
§ 2∙6. Determinants and eigenvalues.
§ 2∙7. Phase space.
§ 2∙8. Probability distribution of strain vectors.

(§§ 2∙1 and 2∙2 were renumbered from 1∙1 and 1∙2 and, as a result, §§ 2∙3, 2∙4, and 2∙5[a] were renumbered from 2∙2, 2∙3, and 2∙4 respectively; but the necessary alterations to the numbering were carried no further. The title of § 2∙8 was altered from ‘Probability distribution of phase space’.)

EDDN/B/2/34 · Item · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 11. The Bernoulli fluctuation.
§ 12. The standard of length.
§ 13. Non-uniform curvature of space.
§ 14. The extraneous standard.
§ 15. Scale-free physics.
§ 16. Pseudo-discrete wave functions.
§ 17. Stabilised characteristics.
§ 18. Stabilisation of tensors.

EDDN/B/2/32 · Item · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 2∙1. The Bernoulli fluctuation.
§ 2∙2. The standard of length.
§ 2∙3. Non-uniform curvature of space.
§ 2∙4. The extraneous standard.
§ 2∙5. Pseudo-discrete wave functions.

(The title of § 2∙5 was altered from ‘Occupation factors’.)

EDDN/B/2/9 · Item · Dec. 1942–Aug. 1943
Part of Papers of Sir Arthur Eddington

§ 22. Mutual and self energy.
§ 23. Comparison particles.
§ 24. The phase coordinate.
§ 25. Interchange.
§ 26. Hydrocules.
§ 27. The β-factors.
§ 28. The observational system.
§ 29. Calculated values of the microscopic constants.
§ 30. The two-particle transformation.

(Drafted Dec. 1942; revised Aug. 1943.)

EDDN/B/2/35 · Item · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 3∙1. Idempotent vectors.
§ 3∙2. Spectral sets of particles.
§ 3∙3. The linear wave equation.
§ 3∙4. Matrix representation of E-numbers.
§ 3∙5. Wave vectors and tensors.
§ 3∙6[a]. Space tensors and strain tensors of the second rank.
§ 3∙7[a]. Angular momentum.
§ 3∙8. The differential wave equation.
§ 3∙6[b]. The differential wave equation.
§ 3∙7[b]. Angular momentum.

Chapter III: Interchange
EDDN/B/1/5 · Item · June 1944
Part of Papers of Sir Arthur Eddington

§ 24. The phase dimension.
§ 25. Interchange of suffixes.
§ 26. The two-particle transformation.
§ 27. Hydrocules.
§ 28. Separation of electrical energy.
§ 29. Current masses of the proton and electron.
§ 30. Molarly controlled charge.
§ 31. Secondary anchors.
§ 32. Calculated values of the microscopic constants.
§ 33. The Coulomb energy.

EDDN/B/2/27 · Item · [before July 1942]
Part of Papers of Sir Arthur Eddington

§ 19. Object-fields.
§ 20. The rigid-field convention.
§ 21. The rigid field in scale-free physics.
§ 22. Partition of the energy tensor.
§ 23. The inversion of energy.
§ 24. Rigid coordinates.
§ 25. Standard particles and vector particles.
§ 26. Transition particles.
§ 27. Protons and electrons.
§ 28. The mass m0.

(Formerly two chapters. The title was altered from ‘Fields and Particles’; ‘Chapter IV. Multiplicity Factors.’ has been struck through before § 25.)